Carnegie Mellon University The Robotics Institute

Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

Yongxin Wang, Kris Kitani, Xinshuo Weng Robotics Institute, Carnegie Mellon University

Quantitative Evaluation on the MOT Challenges

	Method	MOTA(%)↑	IDF1(%)↑	MT(%)↑	ML(%)↓	IDS↓	3 <u>.</u>					
2DMOT2015	DMT [27]	44.5	49.2	34.7	22.1	684	Method	MOTA(%)↑	IDF1(%)↑	MT(%)↑	ML(%)↓	IDS↓
	Lif_TsimInt [81]	47.2	57.6	27.0	29.8	554	DeepSORT_2 [13]	61.4	62.2	32.8	18.2	1.423
	MDP_SubCNN [11]	47.5	55.7	30.0	18.6	628	NOMTwSDP16 [85]	62.2	62.6	32.5	31.1	406
	CDA_DDAL [82]	51.3	54.1	36.3	22.2	544	VMaxx [87] 9 RAR16wVGG [86] 14 TAP [88] 9 CNNMTT [89]	62.6	49.2	32.7	21.1	1,389
	MPNTrack [40]	51.5	58.6	31.2	25.9	375		63.0	63.8	39.9	22.1	482
	EAMTT [83]	53.0	54.0	35.9	19.6	776		64.8	73.5	38.5	21.6	<u>571</u>
	AP_HWDPL [84]	53.0	52.0	29.1	20.2	708		65.2	62.2	32.5	21.3	946
	NOMTwSDP [85]	55.5	59.1	39.0	25.8	427	POI [90]	66.1	<u>65.1</u>	34.0	20.8	3,093
	RAR15 [86]	56.5	61.3	45.1	14.6	428	Tube_TK_POI [35]	66.9	62.2	<u>39.0</u>	16.1	1,236
	Tube TK [35]	58.4	53.1	39.3	18.0	854	CTracker_V1 [34]	67.6	57.2	32.9	23.1	1,897
	GSDT (Ours)	60.7	64.6	47.0	10.5	477	GSDT (Ours)	<u>66.7</u>	<u>69.2</u>	<u>38.6</u>	<u>19.0</u>	959

	Method	MOTA(%)↑	IDF1(%)↑	MT(%)†	ML(%)↓	IDS↓
	MPNTrack [40]	58.8	61.7	28.8	33.5	1,185
MOT17	Lif_T [81]	60.5	65.6	27.0	33.6	1,189
	Tube_TK [35]	63.0	58.6	31.2	19.9	4,137
	CTrackerV1 [34]	66.6	57.4	32.2	24.2	5,529
	CTTrack17 [30]	67.8	<u>64.7</u>	34.6	24.6	3,039
	GSDT (Ours)	<u>66.2</u>	68.7	40.8	18.3	3,318

	Method	MOTA(%)↑	IDF1(%)↑	MT(%)↑	ML(%)↓	IDS↓
I 20	SORT20 [12]	42.7	45.1	16.7	26.2	4,334
MO	GSDT (Ours)	67.1	67.5	53.1	13.2	3,133

Qualitative Analysis

Visualization on MOT20 test sequences

MOT20-04

MOT20-07

Visualization on MOT17 test sequences

MOT17-03

MOT17-07

Visualization on 2DMOT2015 test sequences

Our Method with/without GNNs

Our method with GNNs

Our method with GNNs

Our method without GNNs

Our method with GNNs

Our method without GNNs

Our Joint MOT Method with GNNs vs. Existing Joint MOT Methods without GNNs

Ours – Joint detection and data association with GNNs

FairMOT^[1] – Joint detection and data association **without GNNs**

Objects that are detected in one video but are missing in the other are marked with bold bounding boxes

[1] Y. Zhang, C. Wang, X. Wang, W. Zeng, W. Liu. A Simple Baseline for Multi-Object Tracking. In arXiv preprint arXiv:2004.01888, 2020.

Our Joint MOT Method with GNNs vs. Existing Methods using GNNs for Data Association only

Ours – Joint detection and data association with GNNs

MPNTrack^[2] – **Data association only** with GNNs

Ours – Joint detection and data association with GNNs

MPNTrack^[2] – **Data association only** with GNNs

Objects that are detected in one video but are missing in the other are marked with bold bounding boxes

[2] G. Brasó, L. Leal-Taixé. Learning a Neural Solver for Multiple Object Tracking. CVPR, 2020. **Carnegie Mellon University** The Robotics Institute

Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

Yongxin Wang, Kris Kitani, Xinshuo Weng Robotics Institute, Carnegie Mellon University

