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Abstract

Human communication is multimodal in na-
ture; it is through multiple modalities such as
language, voice, and facial expressions, that
opinions and emotions are expressed. Data in
this domain exhibits complex multi-relational
and temporal interactions. Learning from this
data is a fundamentally challenging research
problem. In this paper, we propose Modal-
Temporal Attention Graph (MTAG). MTAG
is an interpretable graph-based neural model
that provides a suitable framework for analyz-
ing multimodal sequential data. We first in-
troduce a procedure to convert unaligned mul-
timodal sequence data into a graph with het-
erogeneous nodes and edges that captures the
rich interactions across modalities and through
time. Then, a novel graph fusion operation,
called MTAG fusion, along with a dynamic
pruning and read-out technique, is designed to
efficiently process this modal-temporal graph
and capture various interactions. By learn-
ing to focus only on the important interactions
within the graph, MTAG achieves state-of-
the-art performance on multimodal sentiment
analysis and emotion recognition benchmarks,
while utilizing significantly fewer model pa-
rameters.1

1 Introduction

With recent advances in machine learning research,
analysis of multimodal sequential data has become
increasingly prominent. At the core of modeling
this form of data, there are the fundamental re-
search challenges of fusion and alignment. Fusion
is the process of blending information from multi-
ple modalities. It is usually preceded by alignment,
which is the process of finding temporal relations
between the modalities. An important research
area that exhibits this form of data is multimodal
language analysis, where sequential modalities of

∗Equal contribution
1Code is available at https://github.com/

jedyang97/MTAG.
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Figure 1: Example visualization of tri-modal Modal-
Temporal Attention learned by our proposed model.
Each circle represents a node from video/text/audio
modalities, and the blue lines denote the learned atten-
tion weights (i.e. the thicker and darker a blue line
is, the larger the attention weight). We observe high
intensities between semantically correlated graph enti-
ties, such as "Really Enjoy" and the raise in eyebrow,
which indicate positive sentiment. Note that our graph-
based model learns multimodal interactions without
prior alignment, and captures diverse types of inter-
actions across multiple modalities all the same time.
Edge types are not shown for visual clarity.

language, vision, and acoustic are present. These
three modalities carry the communicative informa-
tion and interact with each other through time; e.g.
positive word at the beginning of an utterance may
be the cause of a smile at the end. When ana-
lyzing such multimodal sequential data, it is cru-
cial to build models that perform both fusion and
alignment accurately and efficiently by a) aligning
arbitrarily distributed asynchronous modalities in
an interpretable manner, b) efficiently accounting
for short and long-range dependencies, c) explic-
itly modeling the inter-modal interactions between
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Figure 2: The 3-stage MTAG framework: Node Construction, Edge Construction and Fusion+Pruning. [Node
Construction] Each modality’s features are first passed through a distinct Feed-Forward-Network to be mapped
into the same embedding size. Then, a positional embedding is added to each transformed feature based on its
position in its own modality, so that temporal information are encoded. The features are now nodes in the graph.
[Edge Construction] We then apply an algorithm to construct edges among these nodes by appropriately indexing
each edge with a modal type and a temporal type. [Fusion+Pruning] Finally, we pass the graph into the MTAG
module to learn interactions across modality and time. The output graph with updated node embeddings and
pruned edges can be passed to downstream modules, e.g. a Multi-layer Perceptron, to complete specific tasks such
as regression or classification.

the modalities while simultaneously accounting for
intra-modal dynamics.

In this paper, we propose MTAG (Modal-
Temporal Attention Graph). MTAG is capable of
both fusion and alignment of asynchronously dis-
tributed multimodal sequential data. Modalities
do not need to be pre-aligned, nor do they need to
follow similar sampling rate. MTAG can capture
interactions of various types across any number
of modalities all at once, comparing to previous
methods that model bi-modal interactions at a time
(Tsai et al., 2019a). At its core, MTAG utilizes
an efficient trimodal-temporal graph fusion oper-
ation. Coupled with our proposed dynamic prun-
ing technique, MTAG learns a parameter-efficient
and interpretable graph. In our experiments, we
use two unaligned multimodal emotion recognition
and sentiment analysis benchmarks: IEMOCAP
(Busso et al., 2008) and CMU-MOSI (Zadeh et al.,
2016). The proposed MTAG model achieves state-
of-the-art performance with far fewer parameters.
Subsequently, we visualize the learned relations
between modalities and explore the underlying dy-
namics of multimodal language data. Our model
incorporates all three modalities in both alignment
and fusion, a fact that is also substantiated in our
ablation studies.

2 Related Works

Human Multimodal Language Analysis An-
alyzing human multimodal language involves
learning from data across multiple heterogeneous
sources that are often asynchronous, i.e. language,
visual, and acoustic modalities that each uses a
different sampling rate. Earlier works assumed
multimodal sequences are aligned based on word
boundaries (Lazaridou et al., 2015; Ngiam et al.,
2011; Gu et al., 2018; Dumpala et al., 2019; Pham
et al., 2019) and applied fusion methods for aligned
sequences. To date, modeling unaligned multi-
modal language sequences remains understudied,
except for (Tsai et al., 2019a; Khare et al., 2020;
Zheng et al., 2020), which used cross-modal Trans-
formers to model unaligned multimodal language
sequences. However, the cross-modal Transformer
module is a bi-modal operation that only account
for two modalities’ input at a time. In Tsai et al.
(2019a), the authors used multiple cross-modal
Transformers and applies late fusion to obtain tri-
modal features, resulting in a large amount of pa-
rameters needed to retain original modality infor-
mation. Other works that also used cross-modal
Transformer architecture for include Yang et al.
(2020); Siriwardhana et al. (2020). In contrast to
the existing works, our proposed graph method,



with very small amount of model parameters, can
aggregate information from multiple (more than 2)
modalities at early stage by building edges between
the corresponding modalities, allowing richer and
more complex representation of the interactions to
be learned.

Graph Neural Networks Graph Neural Net-
work (GNN) was introduced in (Gori et al., 2005;
Scarselli et al., 2008) with an attempt to extend
deep neural networks to handle graph-structured
data. Since then, there has been an increasing
research interest on generalizing deep neural net-
work’s operations such as convolution (Kipf and
Welling, 2016; Schlichtkrull et al., 2017; Hamilton
et al., 2017), recurrence (Nicolicioiu et al., 2019),
and attention (Veličković et al., 2018) to graph.

Recently, several heterogeneous GNN methods
(Wang et al., 2019a; Wei et al., 2019; Shi et al.,
2016) have been proposed. The heterogeneous
nodes referred in these works consist of uni-modal
views of multiple data generating sources (such
as movie metadata node, audience metadata node,
etc.), whereas in our case the graph nodes repre-
sent multimodal views of a single data generating
source (visual, acoustic, textual nodes from a single
speaking person). In the NLP domain, multimodal
GNN methods (Khademi, 2020; Yin et al., 2020)
on tasks such as Visual Question Answering and
Machine Translation. However, these settings still
differ from ours because they focused on static im-
ages and short text which, unlike the multimodal
video data in our case, do not exhibit long-term
temporal dependencies across modalities.

Based on these findings, we discovered there
has been little research using graph-based methods
for modeling unaligned, multimodal language se-
quences, which includes video, audio and text. In
this paper, we demonstrate our proposed MTAG
method can effectively model such unaligned, mul-
timodal sequential data.

3 MTAG

In this section, we describe our proposed frame-
work: Modal Temporal Attention Graph (MTAG)
for unaligned multimodal language sequences. We
describe how we formulate the multimodal data
into a graph G(V ,E), and the MTAG fusion op-
eration that operates on G. In essence, our graph
formulation by design alleviates the need for any
hard alignments, and combined with MTAG fu-
sion, allows nodes from one modality to interact

Notation Explanation

vi Node i
eij Edge from vi to vj
Ni Neighbor nodes incident into vi
xi Initial node feature for vi
x′i Transformed node feature for vi
πi Node type for vi
φij Edge modality type for eij
τij Edge temporal type for eij
Mπi Node type specific transformation matrix
aφij ,τij Edge type specific learnable attention vector
βi,j Raw attention score of node pair (vi,vj)

αi,j
Attention weight of node pair (vi,vj),

normalized over Ni

zi Node output feature for vi
k Prune percentage
h Index of multi-head attention head
H Number of total attention heads

Table 1: Terminologies used in this paper.

freely with nodes from all other modalities at the
same time, breaking the limitation of only mod-
eling pairwise modality interactions in previous
works. Figure 2 gives a high-level overview of the
framework.

3.1 Node Construction
As illustrated in Figure 2, each modality’s input
feature vectors are first passed through a modality-
specific Feed-Forward-Network. This allows fea-
ture embeddings from different modalities to be
transformed into the same dimension. A positional
embedding (details in Appendix A) is then added
(separately for each modality) to each embedding
to encode temporal information. The output of this
operation becomes a node vi in the graph. Each
node is marked with a modality identifier πi, where
πi ∈ {Audio, Video, Text} in our case.

3.2 Edge Construction
In this section, we describe our design of modality
edges and temporal edges. For a given node of
a particular modality, its interactions with nodes
from different modalities should be considered dif-
ferently. For example, given a Video node, its inter-
action with an Audio node should be different from
that with a Text node. In addition, the temporal
order of the nodes also plays a key role in multi-
modal analysis (Poria et al., 2017). For example,
a transition from a frown to a smile ( → → )
may imply a positive sentiment, whereas a tran-
sition from a smile to a frown ( → → ) may
imply a negative sentiment. Therefore, interactions



between nodes that appear in different temporal
orders should also be considered differently. In
GNNs, the edges define how node features are ag-
gregated within a graph. In order to encapsulate the
diverse types of node interactions, we assign edge
types to each edge so that information can be ag-
gregated differently on different types of edges. By
indexing edges with edge types, different modal
and temporal interactions between nodes can be
addressed separately.

Multimodal Edges. As we make no assumption
about prior alignment of the modalities, the graph
is initialized to be a fully connected graph. We use
eij to represent an edge from vi to vj . We assign eij
with a modality type identifier φij = (πi → πj).
For example, an edge pointing from a Video node
to a Text node will be marked with type φij =
(Video→ Text).

Temporal Edges. In addition to φij , we also as-
sign a temporal label τij to each eij . Depending
on the temporal order of vi and vj connected by
eij , we determine the value of τij to be either of
{past, present, future}. For nodes from the same
modality, the temporal orders can be easily deter-
mined by comparing their order of occurrences. To
determine the temporal orders for nodes across dif-
ferent modalities, we first roughly align the two
modalities with our pseudo-alignment. Then the
temporal order can be simply read out.

Pseudo-Alignment. As mentioned above, it is sim-
ple to determine the temporal edge types for nodes
in a single modality. However, there is no clear def-
inition of “earlier" or “later" across two modalities,
due to the unaligned nature of our input sequences.
To this end, we introduce the pseudo-alignment
heuristic that coarsely defines the past, present
and future connections between nodes across two
modalities. Given a node vi from one modality
πi, our pseudo-alignment first determines a set of
nodes Vi,present in the other modality that can be
aligned to vi and considered as “present". All nodes
in the other modality that exists after Vi,present are
considered “future" Vi,future, and all those before
are considered Vi,past. Once the coarse temporal
order is established, the cross-modal temporal edge
types can be easily determined. Figure 3 shows
an example of such pseudo-alignment, and more
details regarding the calculations can be found in
Appendix A.2.

Time

Future Edge
Present Edge
Past Edge

Vision Node

TextNode

Past Nodes PresentNodes Future Nodes

Figure 3: An example of the pseudo-alignment be-
tween two unaligned sequences. We first align the
longer sequence to the shorter one as uniformly as pos-
sible. Then the aligned nodes from the longer sequence
becomes the Vi,present for node vi in the shorter se-
quence. Vi,past and Vi,future can then be determined
accordingly.

3.3 Fusion and Pruning

3.3.1 MTAG Fusion
With our formulation of the graph, we design the
MTAG fusion operation that can digest our graph
data with various node and edge types, and thus
model the modal-temporal interactions. An algo-
rithm of our method is shown in Algorithm 1 and
a visual illustration is given in Figure 4. Specifi-
cally, for each neighbor node vj that has an edge
incident into a center node vi, we compute a raw at-
tention score β[h],i,j based on that edge’s modality
and temporal type:

β[h],i,j = LeakyRelu(aφji,τji[h] · [x′i‖x′j ]) (1)

where [·||·] denotes the concatenation of two col-
umn vectors into one long column vector. The [h]
index is used to distinguish which multi-head atten-
tion head is being used. Note that aφji,τji[h] depends
on both the modality and temporal edge types of eji.
This results in 27 edge types (9 types of modality
interaction × 3 types of temporal interaction).

We normalize the raw attention scores over all
neighbor nodes vj with Softmax so that the nor-
malized attention weight sums to 1 to preserve the
scale of the node features in the graph.

α[h],i,j =
exp(β[h],i,j)∑

k∈Ni
exp(β[h],i,k)

(2)

Then, we perform node feature aggregation for
each node vi following:

zi =
H

concat
h=1

(
∑
j∈Ni

α[h],i,jx
′
j) (3)



Algorithm 1: MTAG with edge pruning

1 Feature transformation x′i ←Mπixi,∀i
2 for h = 1...H do
3 for j ∈Ni ∪ i do
4 calculate raw attention score using

modality- and temporal-edge-type
specific parameters: β[h],i,j =

LeakyRelu(aφji,τji[h] · [x′i‖x′j ])

5 normalize raw attention scores over
Ni ∪ i to get attention weight α[h],i,j

6 calculate node output feature

zi =
H

concat
h=1

(
∑

j∈Ni∪i α[h],i,jx
′
j)

7 calculate average attention weight across all
heads αi,j = 1

H

∑H
h=1(α[h],i,j)

8 sort αi,j and delete the edges with the
smallest k% average attention weight from
Ni ∪ i, obtaining N ′i

9 return zi, N ′i ∀i

where Ni defines the neighbors of vi and hyperpa-
rameter H is the number of total attention heads.
zi now becomes the new node embedding for node
vi. After aggregation, vi transformed from a node
with unimodal information into a node encoding
the diverse modal-temporal interactions between
vi and its neighbors (illustrated by the mixing of
colors of the nodes in Figure 2).

We desgined the operation to have H multi-head
attention heads because the heterogeneous input
data of the multimodal graph could be of differ-
ent scales, making the variance of the data high.
Adding multi-head attention could help stabilize
the behavior of the operation.

3.3.2 Dynamic Edge Pruning

Our graph formulation models interactions for all
27 edge types. This design results in a very large
number of edges in the graph, making the com-
putation graph difficult to fit into GPU memories.
More importantly, when there are so many edges,
it is hard to avoid some of these edges from induc-
ing spurious correlations and distracting the model
from focusing on the truly important interactions
(Lee et al., 2019; Knyazev et al., 2019). To address
these challenges, we propose to dynamically prune
edges as the model learns the graph. Specifically,
after each layer of MTAG, we have the attention
weight α[h],i,j for each attention head h and for

i
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Figure 4: Visualization of the MTAG operation around
a single node. The text on each edge indicates which
attention vector is used for that edge. Purple triangle
represents a video node, green circle represents a text
node and blue square represents an audio node.

each edge eij . We take the average of the attention
weights over the attention heads:

αij =
1

H

H∑
h=1

(α[h],i,j) (4)

Then, we sort αij and delete k% edges with the
smallest attention weights, where k is a hyperpa-
rameter. These deleted edges will no longer be
calculated in the next MTAG fusion layer. Our ab-
lation study in Section 5.2 empirically verifies the
effectiveness of this approach by comparing to no
pruning and random pruning.

3.4 Graph Readout

At the end of the MTAG fusion process, we need
to read out information scattered in the nodes into
a single vector so that we can pass it through a
classification head. Recall that the pruning process
drops edges in the graph. If all edges incident into
a node have been dropped, then it means that node
was not updated based on its neighbors. In that
case, we simply ignore that node in the readout
process.

V ′ = {vi | vi ∈ V and count_incident_edge(vi) > 0}
(5)

We readout the graph by averaging all the surviv-
ing nodes’ output features into one vector. This
vector is then passed to a 3-layer Multi-Layer-
Perceptron (MLP) to make the final prediction.



Model \ Emotion Happy Sad Angry Neutral

(Unaligned) IEMOCAP Emotions.

CTC + EF-LSTM 75.7 70.5 67.1 57.4
LF-LSTM 71.8 70.4 67.9 56.2

CTC + RAVEN 76.8 65.6 64.1 59.5
CTC + MCTN 77.5 71.7 65.6 49.3

MulT 81.9 74.1 70.2 59.7

MTAG (ours) 86.0 79.9 76.7 64.1

Table 2: F1 Scores on unaligned IEMOCAP. Higher is
better.

4 Experiments

We empirically evaluate MTAG model on two
datasets: IEMOCAP (Busso et al., 2008) and CMU-
MOSI (Zadeh et al., 2016); both are well-known
datasets used by prior works (Liang et al., 2018;
Pham et al., 2019; Tsai et al., 2019b,a) to bench-
mark multimodal emotion recognition and senti-
ment analysis.

4.1 Dataset and Metrics
IEMOCAP IEMOCAP is a multimodal emotion
recognition dataset consisting of 10K videos. The
task we chose is the 4-way multilabel emotion clas-
sification, classifying into happy, sad, angry and
neutral. For train split, the positive/negative la-
bel ratio for each emotion is 954:1763, 338:2379,
690:2027 and 735:1982. For the test split, the ratio
is 383:555, 135:803, 193:745 and 227:711. Due to
this unbalanced distribution of the the labels, we
use F1 score as a better metric for comparison.

CMU-MOSI CMU Multimodal Opinion Senti-
ment Intensity is a multimodal sentiment analysis
dataset with 2,199 movie review video clips. Each
video clip is labeled with real-valued sentiment
score within [−3,+3], with +3 being a very pos-
itive sentiment and −3 a very negative one. Fol-
lowing previous works (Tsai et al., 2019a), we re-
port five metrics: 7-class classification accuracy
(Acc7), binary classification accuracy (Acc2, posi-
tive/negative sentiments), F1 score, Mean Absolute
Error (MAE) and the correlation of the model’s
prediction with human.

We follow prior works (Tsai et al., 2019a) to eval-
uate on both of the above unaligned datasets, where
original audio and video features are used, result-
ing in variable sequence lengths across modalities.
For both datasets, the multimodal features are ex-
tracted from the textual (GloVe word embeddings

Model \ Metirc Acc7 ↑ Acc2 ↑ F1 ↑ MAE ↓ Corr ↑

(Unaligned) CMU-MOSI Sentiment

CTC+EF-LSTM 31.0 73.6 74.5 1.078 0.542

LF-LSTM 33.7 77.6 77.8 0.988 0.624

CTC+MCTN 32.7 75.9 76.4 0.991 0.613

CTC+RAVEN 31.7 72.7 73.1 1.076 0.544

MulT 39.1 81.1 81.0 0.889 0.686

MTAG (ours) 38.9 82.3 82.1 0.866 0.722

Table 3: Results on unaligned CMU-MOSI. ↑ means
higher is better and ↓ means lower is better.

Model # Parameters

MulT (previous SOTA) 2.24 M

MTAG (ours) 0.14 M

Table 4: Number of model parameters (M = Million).

(Pennington et al., 2014)), visual (Facet (iMotions,
2017)), and acoustic (COVAREP (Degottex et al.,
2014)) data modalities.

4.2 Baselines
For basleine evaluations, we use Early Fusion
LSTM (EF-LSTM) and Late Fusion LSTM (LF-
LSTM) (Tsai et al., 2019a) as baselines. In addi-
tion, we compare our model against similar meth-
ods as in previous works (Tsai et al., 2019a), which
combine a Connectionist Temporal Classification
(CTC) loss (Graves et al., 2006) with the pre-
existing methods such as EF-LSTM, MCTN (Pham
et al., 2019), RAVEN (Wang et al., 2019b).

4.3 Results
Shown in Table 2 and Table 3, MTAG substan-
tially out-performs previous methods on unaligned
IEMOCAP benchmark and CMU-MOSI bench-
mark on most of the metrics. MTAG also achieves
on-par performance on the Acc7 metric on CMU-
MOSI benchmark. With an extremely small num-
ber of parameters, our model is able to learn bet-
ter alignment and fusion for multimodal sentiment
analysis task. Details regarding our model and
hyper-parameters can be found in the Appendix A.

Parameter Efficiency (MTAG vs MulT) We
discover that MTAG is a highly parameter-efficient
model. A comparison of model parameters be-
tween MTAG and MulT (Tsai et al., 2019a) (previ-
ous state of the art) is shown in Table 4. The hyper-
parameter used for this comparison can be found



in the Appendix. With only a fraction (6.25%) of
MulT’s parameters, MTAG is able to achieve on-
par, and in most cases superior performance on
the two datasets. This demonstrates the parameter
efficiency of our method.

Qualitative Analysis The attention weights on
the graph edges forms a natural way to interpret
our model. We visualize the edges to probe what
MTAG has learned. The following case study is a
randomly selected video clip from the CMU-MOSI
validation set. We observe the phenomena shown
below is a general trend.

In Figure 5, we show an example of the asymmet-
ric bi-modal relations between vision and text. We
observe that our model picks on meaningful rela-
tions between words such as “I really enjoyed"
and facial expressions such as raising eyebrow,
highlighted in the red dashed boxes in Figure 5a.
Our model can also learn long-range correlation
between “I really enjoyed" and head nodding. In-
terestingly, we discover that strong relations that
are not detected by vision-to-text edges can be re-
covered by the text-to-vision edges. This advocates
the design of the multi-type edges, which allows
the model to learn different relations independently
that can complement one another.

Figure 1 gives a holistic view of the attention
weights among all three modalities. We observe
a pattern where almost all edges involve the text
modality. A possible explanation for this observa-
tion is that the text is the dominant modality with
respect to the sentiment analysis task. This hypoth-
esis is verified by the ablation study in Sec. 5.3.
Meanwhile, there appears to be very small amount
of edges connecting directly between vision and
audio, indicating that there might be little meaning-
ful correlation between them. This resonates with
our ablation studies in Table 5, where vision and
audio combined produce the lowest bi-modal per-
formance. Under such circumstance, our MTAG
learns to kill direct audio-vision relations and in-
stead fuse their information indirectly using the
text modality as a proxy, whereas previous meth-
ods such as MulT keeps audio-vision attentions
alive along the way, introducing possible spurious
relations that could distract model learning.

5 Ablation Study

We conduct ablation study using unalgined CMU-
MOSI dataset. MTAG Full Model implements
multimodal temporal edge types, adopts TopK

Ablation Acc2 ↑ F1 ↑ MAE ↓

Edge Types

No Edge Types 82.4 82.5 0.937

Multimodal Edges Only 85.6 85.7 0.859
Temporal Edges Only 85.2 85.2 0.887

Pruning

Random Pruning Keep 80% 75.5 74.5 1.080

No Pruning 84.7 84.7 0.908

Modalities

Language Only 81.5 81.4 0.911

Vision Only 57.0 57.1 1.41

Audio Only 58.1 58.1 1.37

Vision, Audio 62.0 59.2 1.360

Language, Audio 85.9 85.7 0.915

Language, Vision 86.6 86.6 0.896

Full Model, All Modalities 87.0 87.0 0.859

Table 5: Ablation on unaligned CMU-MOSI validation
set.

edge pruning that keeps edges with top 80% edge
weights, and includes all three modalities as its in-
put. Table 5 shows the performance. We present
research questions (RQs) as follows and discuss
how ablation studies address them.

5.1 RQ1: Does using 27 edge types help?

We first study the effect of edge types on our model
performance. As we incrementally add in multi-
modal and temporal edge types, our model’s per-
formance continues to increase. The model with
27 edge types performs the best under all metrics.
By dedicating one attention vector aφji,τji to each
edge, MTAG can model each complex relation in-
dividually, without having one relation interfering
another. As shown in Figure 5 and Table 5, such
design enhances multimodal fusion and alignment,
helps maintain long-range dependencies in multi-
modal sequences, and yields better results.

5.2 RQ2: Does our pruning method help?

We compare our TopK edge pruning to no pruning
and random pruning to demonstrates it effective-
ness. We find that TopK pruning exceeds both no
pruning and random pruning models in every as-
pect. It is clear that, by selectively keeping the top
80% most important edges, our model learns more
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(b) Vision-to-text edge attention weights.

Figure 5: We visualized the asymmetric attention weights of the text-to-vision and vision-to-text edges for one of
the validation sequence in CMU-MOSI dataset. The visualized attention weights are from layer 3 of MTAG. Note
that the edge types are not shown here for visual clarity.

meaningful representations than randomly keeping
80%. Our model also beats the one where no prun-
ing is applied, which attests to our assumption and
observation from previous work (Lee et al., 2019;
Knyazev et al., 2019) that spurious correlations do
exist and can distract model from focusing on im-
portant interactions. Therefore, by pruning away
the spurious relations, the model learned a better
representation of the interactions, while using sig-
nificantly fewer computation resources.

5.3 RQ3: Are all modalities helpful?

Lastly, we study the impact of different modality
combinations used in our model. As shown in Ta-
ble 5, we find that adding a modality consistently
brings performance gains to our model. Through
the addition of individual modalities, we find that
adding the text modality gives the most significant
performance gain, indicating that text may be the
most dominant modality for our task. This can
also be qualitative confirmed by seeing the concen-
trated edge weights around text modality in Figure
1. This observation also conforms with the observa-
tions seen in prior works (Tsai et al., 2019a; Pham
et al., 2019). On the contrary, adding audio only
brings marginal performance gain. Overall, this
ablation study demonstrates that all modalities are
beneficial for our model to learn better multimodal
representations.

6 Conclusion

In this paper, we presented the Modal-Temporal
Attention Graph (MTAG). We showed that MTAG
is an interpretable model that is capable of both
fusion and alignment. It achieves similar to SOTA
performance on two publicly available datasets for
emotion recognition and sentiment analysis while
utilizing substantially lower number of parameters
than a transformer-based model such as MulT.

Acknowledgements

We thank Jianing Qian, Xiaochuang Han and Haop-
ing Bai at CMU and the anonymous reviewers at
NAACL for providing helpful discussions and feed-
backs. This material is based upon work partially
supported by BMW of North America, the Na-
tional Science Foundation and National Institutes
of Health. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of BMW of North America, National Sci-
ence Foundation or National Institutes of Health,
and no official endorsement should be inferred.

References

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S
Narayanan. 2008. Iemocap: Interactive emotional



dyadic motion capture database. Language re-
sources and evaluation, 42(4):335.

Gilles Degottex, John Kane, Thomas Drugman, Tuomo
Raitio, and Stefan Scherer. 2014. Covarep—a col-
laborative voice analysis repository for speech tech-
nologies. In 2014 ieee international conference
on acoustics, speech and signal processing (icassp),
pages 960–964. IEEE.

Sri Harsha Dumpala, Imran Sheikh, Rupayan
Chakraborty, and Sunil Kumar Kopparapu. 2019.
Audio-visual fusion for sentiment classification
using cross-modal autoencoder. In Proc. Neural Inf.
Process. Syst.(NIPS), pages 1–4.

Marco Gori, Gabriele Monfardini, and Franco Scarselli.
2005. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Con-
ference on Neural Networks, 2005., volume 2, pages
729–734. IEEE.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 369–376.

Yue Gu, Kangning Yang, Shiyu Fu, Shuhong Chen,
Xinyu Li, and Ivan Marsic. 2018. Multimodal af-
fective analysis using hierarchical attention strategy
with word-level alignment. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2225–2235, Melbourne, Australia. Association for
Computational Linguistics.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in neural information processing systems,
pages 1024–1034.

iMotions. 2017. Facial expression analysis.

Mahmoud Khademi. 2020. Multimodal neural graph
memory networks for visual question answering. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7177–
7188, Online. Association for Computational Lin-
guistics.

Aparna Khare, Srinivas Parthasarathy, and Shiva Sun-
daram. 2020. Multi-modal embeddings using multi-
task learning for emotion recognition. Interspeech
2020.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Boris Knyazev, Graham W Taylor, and Mohamed
Amer. 2019. Understanding attention and gener-
alization in graph neural networks. In Advances
in Neural Information Processing Systems, pages
4202–4212.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015. Combining language and vision with
a multimodal skip-gram model. arXiv preprint
arXiv:1501.02598.

J. Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-
attention graph pooling. In ICML.

Paul Pu Liang, Ziyin Liu, Amir Zadeh, and Louis-
Philippe Morency. 2018. Multimodal language anal-
ysis with recurrent multistage fusion. arXiv preprint
arXiv:1808.03920.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan
Nam, Honglak Lee, and Andrew Y Ng. 2011. Mul-
timodal deep learning. In ICML.

Andrei Nicolicioiu, Iulia Duta, and Marius Leordeanu.
2019. Recurrent space-time graph neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 12838–12850.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-
Philippe Morency, and Barnabás Póczos. 2019.
Found in translation: Learning robust joint represen-
tations by cyclic translations between modalities. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 6892–6899.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
873–883, Vancouver, Canada. Association for Com-
putational Linguistics.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks. arXiv preprint arXiv:1703.06103.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and
S Yu Philip. 2016. A survey of heterogeneous in-
formation network analysis. IEEE Transactions on
Knowledge and Data Engineering, 29(1):17–37.

S. Siriwardhana, Andrew Reis, Rivindu Weerasekera,
and Suranga Nanayakkara. 2020. Jointly fine-tuning
"bert-like" self supervised models to improve mul-
timodal speech emotion recognition. In INTER-
SPEECH.

https://doi.org/10.18653/v1/P18-1207
https://doi.org/10.18653/v1/P18-1207
https://doi.org/10.18653/v1/P18-1207
https://doi.org/10.18653/v1/2020.acl-main.643
https://doi.org/10.18653/v1/2020.acl-main.643
https://doi.org/10.21437/interspeech.2020-1827
https://doi.org/10.21437/interspeech.2020-1827
https://doi.org/10.18653/v1/P17-1081
https://doi.org/10.18653/v1/P17-1081


Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J. Zico Kolter, Louis-Philippe Morency, and Rus-
lan Salakhutdinov. 2019a. Multimodal transformer
for unaligned multimodal language sequences. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6558–6569, Florence, Italy. Association for Compu-
tational Linguistics.

Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019b. Learning factorized multimodal representa-
tions. ICLR.
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A Appendix

A.1 Positional Embedding

PE(pos,2i) = sin(pos/100002i/demb) (6)

PE(pos,2i+1) = cos(pos/100002i/demb) (7)

A.2 Details regarding pseudo-alignment

Time

Future Edge
Present Edge
Past Edge

Vision Node

TextNode

Past Nodes PresentNodes Future Nodes

(a) Pseudo-Alignment example with less vision nodes

Time

Future Edge
Present Edge
Past Edge

Vision Node

TextNode

Past Nodes PresentNodes Future Nodes

(b) Pseudo-Alignment example with more vision nodes

Figure 6: Examples of pseudo-align heuristic to
coarsely define past, present and future relationships
between two unaligned modalities. We try to spread
and match the two modalities as much as uniformly
possible (the top figure). When the shorter modality
contains more and more nodes, we align as many nodes
from the shorter sequence as possible with a minimum
alignment window size of 2 to the longer sequence, and
the rest nodes from the shorter sequence are aligned
with window size of 1 (the bottom figure).

For node vi in πi, in order to determine the
“present" nodes Vpresent in a different modality, we
draw an analogy from 1D convolution operation.
We are given two sequences of different lengths,
and we can treat the longer sequence as input and
shorter sequence as output to a Conv1D operation.
Our goal is to find a feasible stride and kernel size
that aligns the input and output. The kernel size
defines how many nodes from the longer sequence
to be aligned as “present" to each node from the
shorter sequence. The stride size defines how far
away such alignments should spread in time. We
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Figure 7: Convergence comparison between MTAG
and MulT on validation set of unaligned CMU-MOSI
dataset.

do not consider any padding and have the following
equation in Conv1D operation:

M −W
S

+ 1 = N (8)

where M and N are the sequence lengths of the
output and input to a Conv1D operator, respectively.
W is the kernel size and S the stride size. From Eq.
8, we can further write the relationship between W
and S asW =M − (N −1)∗S. It is clear that the
minimum stride size is 1 to a Conv1D operation,
and the maximum is b M

N−1c in order to keep W
positive. We take the average of the minimum and
maximum possible values of S as our stride size.
In case that N > M

2 , we set window size as 2
and stride as 2. We then find the maximal number
of nodes from N that can have kernel size of 2,
and the rest of the nodes will have kernel size of
1. Eq. 9 shows our kernel size and stride size
calculation and Figure. 6 illustrates our pseudo-
alignment heuristic.


S = davg(1, b M

N−1c)e, if N ≤ M
2W =M − (N − 1) ∗ S

S = 2,W = 2 otherwise
(9)

A.3 Model Efficiency

Number of Parameters. We compare the pa-
rameter efficiency of our model against the SOTA
model, the Multimodal Transformer (MulT) (Tsai
et al., 2019a). We first look at the total number
of parameters used by the two models. Table 4



Hyperparameter CMU-MOSI IEMOCAP

Batch Size 64 64

Initial Learning Rate 1e-3 1e-3

Optimizer Adam Adam

Number of MTAG Layers 6 2

Number of Attention Heads 4 8

Node Embedding Dimension 64 64

Edge Pruning Keep Percentage 80% 80%

Total Epochs 20 35

Table 6: Hyperparameter settings on CMU-MOSI and IEMOCAP benchmarks.

Model \ Dataset CMU-MOSI IEMOCAP

MulT 27.2±2.33 56.0±4.59

MTAG (ours) 24.4±0.95 44.4±0.55

Table 7: Training time per epoch (in seconds) compari-
son. Run time is averaged over 5 training epochs, with
the subscript denoting standard deviation. Both models
use batch_size=32, num_layers=6 and are run on the
same machine with a single GPU of Nvidia GTX 1080
Ti. Both benchmarks used are the unaligned version.

illustrates that our model uses 0.14 million parame-
ters, only 6.3% of those in MulT, which has 2.24
million parameters, and yet still achieves state-of-
the-art performance. We attribute this result to the
effective early fusion of multiple (more than 2)
modalities using the MTAG component. In MulT,
trimodal fusion happens at a very late stage of the
architecture, since each cross-modal Transformer
can only model bi-modal interactions. This late
fusion regime requires earlier layers to preserve
more original information, and thus resulting in a
need for more model parameters.

Convergence. Figure 7 gives a comparison be-
tween the convergence speed of our model and
MulT. Both models are trained with batch_size=32
and lr=1e-3, with the default (best) hyperparam-
eters used for both models. We use the unalignd
CMU-MOSI for this study. We observe MTAG
converges much faster at epoch 12, comparing with
MulT at epoch 17. In addition, we see that our
validation MAE curve on the unaligned MOSI val-
idation set goes consistently below MulT’s curve.
This faster convergence performance could be ex-
plained by the small amount of parameters MTAG

Model # Parameters

MulT (previous SOTA) 2,240,921

MTAG (ours) 142,363

Table 8: Number of model parameters comparison.

uses - MTAG has a much smaller parameter search
space for the optimizer, resulting in faster training
and earlier convergence.

Training time. We also compare how fast our
model runs against MulT. Specifically, under the
same condition, we calculate the time it takes for
each model to run training for 1 epoch. Table 7
shows the details. We can see that our model runs
significantly faster than MulT on both benchmarks,
which can be attributed to our light-weight model
design (as shown in Table 8). Meanwhile, our edge
pruning also reduces the number of computation
by throwing away edges that are deemed less im-
portant by the model, thus improving the run-time
of our model.

Overall Efficiency. From the perspective of
training time, number of parameters used, and con-
vergence analysis, it is clear that our model is ca-
pable of achieving better results while using much
smaller amount of computational resources than
the previous state of the art.

A.4 Hyperparameters

We elaborate on the technical details including hy-
perparameter settings in Table 6. We conduct a ba-
sic grid search to find good hyperparameters such
as initial learning rate, number of MTAG layers
etc. We use Adam as our optimizer and decays the



learning rate by half whenever the validation loss
plateaus. Notice that we are using a design that
roughly yields a model with a similar structure as
in previous works such as MulT. Nevertheless, we
still manage to use far less number of parameters
during optimization. We use one NVIDIA GTX
1080 Ti for training and evaluation. In addition,
the model and hyperparameters we use for abla-
tion study are the same as the ones used for the
main experiment, both of which are conducted on
CMU-MOSI.

A.5 Number of Parameters Comparison
For a fair comparison on number of parameters
between MTAG and MulT, we use the same number
of layers and attention heads for both models (i.e. 6
layers of MulT with 4 attention heads). A detailed
comparison is shown in Table 8.


